Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Health Sci Rep ; 4(3): e318, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34250270

RESUMO

BACKGROUND: Intravenous catheters are common and essential devices within medical practice. Their placement can be difficult, leading to application of several technologies to improve success. Functionally expanding catheters were once an exciting technology, derailed clinically by hypersensitivity reactions. The exact cause of reactions, attributed to Aquavene catheter materials, remains unknown. AIMS: To reinvestigate functionally expanding intravenous catheters. MATERIALS AND METHODS: The history of the functionally expanding intravenous catheter is presented here along with its utility in current medical practice, potential for further investigation, and possible redesign of these once promising devices. RESULTS: This review demonstrates clinical utility and a lack of definitive cause for failure of the previous functionally expanding intravenous catheter design. As Aquavene materials themselves are commonly considered the cause of hypersensitivity reactions which removed expanding intravenous catheters from the market, this review found several possible substitutes for this material for use in any redesign. DISCUSSION AND CONCLUSION: The functionally expanding intravenous catheter failed due to hypersensitivity reactions in patients. Alternative materials exist for a possible redesign on this once promising clinical product.

2.
J Mater Sci Mater Med ; 32(5): 51, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33891186

RESUMO

Intravenous (IV) fluid administration is critical for all patients undergoing care in a hospital setting. In-patient hospital practice, surgeries, and emergency care require functional IVs for fluid replacement and medication administration. Proper placement of IVs is vital to providing medical services. The ease of placement of an IV catheter, however, depends not only on the size of the catheter but also on provider experience and patient demographics such as age, body mass index, hydration status, and medical comorbidities present challenges to successful IV placement. Smaller diameter IV placement can improve success and there are instances where multiple small diameter catheters are placed for patient care when larger bore access is unattainable. Smaller inner-diameter catheters for anesthesia have functional constraints. Ideally, there would be a smaller catheter for placement that could function as a larger catheter for patient care. One solution is the idea of functionally responsive catheters. Here, we evaluated tubular-shaped hydrogels as potential functional catheters that can increase in inner diameter through fluid swelling using cross-linked homopolymers of polyacrylamide, PAM (10-40% w/w), and their copolymers with 0-8% w/w Poly-(Ethylene Glycol)-Diacrylate, PEGDA. For the PAM gels, the water transport mechanism was shown to be concentration-dependent Fickian diffusion, with the less concentrated gels exhibiting increasingly anomalous modes. Increasing the PEGDA content in the network yielded an initial high rate of water uptake, characterized by Case II transport. The swelling kinetics depended strongly on the sample geometry and boundary conditions. Initially, in a submerged swelling, the annulus expands symmetrically in both outward and inward directions (it thickens), reducing the internal diameter by up to 70%. After 1 h, however, the inner diameter increases steadily so that at equilibrium, there is a net (>100%) increase in all the dimensions of the tube. The amount of linear swelling at equilibrium depended only on the polymer volume fraction as made, while the rate of inner diameter expansion depended on the hydrophilicity of the matrix and the kinetics of sorption. This study serves as proof of concept to identify key parameters for the successful design of hydrogel-based catheter devices with expanding inner-diameters for applications in medical care.


Assuntos
Materiais Biocompatíveis , Catéteres , Hidrogéis , Teste de Materiais , Acrilamidas/química , Sulfato de Amônio/química , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...